Utilization of Iron Sand Magnetic Minerals Based on Are River Sand of Sesaot to Improve Water Quality
DOI:
https://doi.org/10.71024/ecobios.2025.v2i2.69Keywords:
Morphological Analysis, magnetic minerals, iron sand, water treatmentAbstract
This research aims to determine the magnetic mineral content, morphology, and effectiveness of Are River (Sesaot) sand-based iron sand in improving water quality in Kebon Kongok. The magnetic mineral synthesis process was carried out using the Solid State Reaction (SSR) method, which includes the stages of washing, drying, heating at 100°C, and magnetic separation. Material characterization was performed using Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX) to analyze mineral content and elemental morphology. The analysis showed a significant increase in iron (Fe) content from 7.57% at 3 hours of grinding to 18.48% at 5 hours, while silica (Si) content decreased from 18.46% to 15.51%. Decreased levels of heavy metals such as iron (Fe), manganese (Mn), and lead (Pb) were measured before and after filtration, indicating the effectiveness of magnetic minerals in adsorbing heavy metals. Fe levels decreased from 0.0037 mg/L to 0.0007 mg/L, Mn levels from 0.0015 mg/L to 0.0008 mg/L, and Pb levels from 0.1415 mg/L to 0.0660 mg/L after filtration for 5 hours. In addition, the physical analysis showed a decrease in Total Dissolved Solids (TDS) from 154 ppm to 146 ppm and conductivity from 308 ms/cm to 293 ms/cm, indicating a reduction in solute concentration. This study concludes that Are River sand-based magnetic minerals synthesized using the SSR method can be an effective solution to improve water quality, contributing to public health and the sustainability of living things. Further research is needed to explore the mechanism of action of magnetic minerals and their potential applications on a wider scale.
References
Cui, Y., Bai, L., Li, C., He, Z., & Liu, X. (2022). Assessment of heavy metal contamination levels and health risks in environmental media in the northeast region. Sustainable Cities and Society, 80, 103796. https://doi.org/10.1016/J.SCS.2022.103796
Didik, L. A., Damayanti, I., Jumliati, J., & Alfadia Lestari, P. D. (2021). Morphological Characteristics and Mineral Content Analysis of Magnetic Minerals Based on River and Coastal Sand using SEM-EDX. Jurnal Sains Dasar, 10(2), 44–50. https://doi.org/10.21831/jsd.v10i2.42217
Didik, L. A., & Wahyudi, M. (2020). Analisa Kandungan Fe dan Karakteristik Sifat Listrik Pasir Besi Pantai Telindung yang Disintesis Dengan Beberapa Metode. Indonesian Physical Review, 3(2), 64–71. https://doi.org/10.29303/i pr.v3i2.58
Ezzeddine, Z., Solh, B., & Hamad, H. (2021). Heavy metals removal by thiol modified oak charcoal: adsorption efficiency and selectivity. International Journal of Advances in Applied Sciences, 10(3), 227–235. https://doi.org/10.11591/ijaas.v10.i3.pp227-235
Feng, X., Sun, S., Cheng, G., Shi, L., & ... (2021). Removal of Uranyl Ion from Wastewater by Magnetic Adsorption Material of Polyaniline Combined with CuFe2O4. Adsorption Science …. https://doi.org/10.1155/2021/5584158
Liosis, C., Papadopoulou, A., Karvelas, E., Karakasidis, T. E., & Sarris, I. E. (2021). Heavy Metal Adsorption Using Magnetic Nanoparticles for Water Purification: A Critical Review. Materials, 14, 7500. https://doi.org/10.3390/ma14247500
Marik, C. M., Anderson-Coughlin, B., Gartley, S., Craighead, S., Bradshaw, R., Kulkarni, P., Sharma, M., & Kniel, K. E. (2019). The efficacy of zero valent iron-sand filtration on the reduction of Escherichia coli and Listeria monocytogenes in surface water for use in irrigation. Environmental Research, 173(February), 33–39. https://doi.org/10.1016/j.envres.2019.02.028
Masruroh, Djoko, D. J. D. H., Didik, L. A., Rahmawati, E., Pagaga, M., Abdurrouf, & Sakti, S. P. (2014). Solvent effect on morphology of polystyrene coating and their role to improvement for biomolecule immobilization in application of QCM based biosensor. In Applied Mechanics and Materials (Vols. 530–531). https://doi.org/10.4028/www.scientific.net/AMM.530-531.54
Meiliyadi, L. A. D., Rahman, M. Z., Arizona, K., & Wahyudi, M. (2025). Utilization of hematite nanomaterial based on Geres river sand magnetic mineral to improve water quality. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 14(1), 121–130. https://doi.org/10.24042/jipfalbiruni.v14i1.26016
Meiliyadi, L. A. D., Rahman, M. Z., & Zain, Z. A. (2024a). Functional Group Analysis of Silica Gel Based on River Sand Magnetic Mineral as Heavy Metal Absorbance. Konstan (Jurnal Fisika Dan Pendidikan Fisika), 9(1), 34–41. https://doi.org/10.20414/konstan.v9i01.484
Meiliyadi, L. A. D., Rahman, M. Z., & Zain, Z. A. (2024b). Study of Babak River water quality using physical and chemical parameters in Kebon Kongok landfill (Lombok, Indonesia). International Journal of Advances in Applied Sciences, 13(2), 225–233. https://doi.org/10.11591/ijaas.v13.i2.pp225-233
Meiliyadi, L. A. D., Ruhana, B. A., & Khasanah, N. (2023). Pengenalan virtual laboratory berbasis Physics Education Technology (PhET) interactive simulation sebagai alternatif praktikum pada siswa sekolah internasional luar negeri Riyadh. Transformasi: Jurnal Pengabdian Masyarakat, 19(1), 60–69. https://doi.org/10.20414/transformasi.v19i1.6189
Meiliyadi, L. A. D., Wahyudi, M., & Arizona, K. (2024). Preliminary Study as Temperature Sensor of Nanosilica Based on Coastal and River Sand. Konstan (Jurnal Fisika Dan Pendidikan Fisika), 9(02), 170–179. https://doi.org/10.20414/konstan.v9i02.594
Meiliyadi, L. A. D., Wahyudi, M., Arizona, K., & Zain, Z. A. (2023). Synthesis of Nanosilica Gel Based on River Sand and Its Use as Water Treatment. Journal of Materials and Environmental Science, 14(11), 1204–1213.
Meiliyadi, L. A. D., Wahyudi, M., Damayanti, I., & Fudholi, A. (2022). Morphological characteristics and electrical properties analysis of silica based on river and coastal iron sand. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 11(1), 129–140. https://doi.org/10.24042/jipfalbiruni.v11i1.12390
Nayak, S. P., Swarnkar, N., & Kumar, J. K. K. (2024). Eco-friendly synthesis of reduced graphene oxide as sustainable catalyst for photodegradation of methylene blue. Inorganic Chemistry Communications, 159, 111792. https://doi.org/10.1016/j.inoche.2023.111792
Ningsih;, F., Fitrianingsih;, & Didik, L. A. (2019). Analisis Pengaruh Lama Penggerusan terhadap Resistivitas dan Konstanta Dielektrik pada Pasir Besi yang disintesis dari Kabupaten Bima. Indonesian Physical Review, 2(3), 92–98. https://doi.org/10.29303/ipr.v2i3.31
Nishad, V., Kumar, S., & Sastry, S. V. A. R. (2025). A Review on Heavy Metals Removal using Zerovalent Iron Nanoparticles: Synthesis, Mechanism, Applications, and Challenges. Trends Is Sciences, 22(5), 9702. https://doi.org//10.48048/tis.2025.9702
Nurhidayati, Didik, L. A., & Zohdi, A. (2021). Identifikasi Pencemaran Logam Berat di Sekitar Pelabuhan Lembar Menggunakan Analisa Parameter Fisika dan Kimia. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 18(2), 139–148. https://doi.org/10.20527/flux.v18i2.9873
Rahmi, Fathurrahmi, Fajri, L., & Wati, F. P. (2019). Preparation of Magnetic Chitosan Using Local Iron Sand for Mercury Removal. Heliyon, 5(e01731). https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01731
Sebayang, P., Kurniawan, C., Aryanto, D., Setiadi, E. A., Tamba, K., Djuhana, & Sudiro, T. (2018). Preparation of Fe3O4/Bentonite Nanocomposite from Natural Iron Sand by Co-precipitation Method for Adsorbents Materials. IOP Conference Series: Materials Science and Engineering, 316(1). https://doi.org/10.1088/1757-899X/316/1/012053
Sukirman, E., Sarwanto, Y., Insani, A., Th Rina, M., & Purwanto, A. (2018). Magnetic Structure of Magnetite Phase of Iron Sand Retrieved from Banten, Indonesia. Journal of Physics: Conference Series, 1091(1). https://doi.org/10.1088/1742-6596/1091/1/012007
Syuzita, A., Meiliyadi, L. A. D., & Bahtiar. (2022). Tingkat Pencemaran Lindi Pada Air Tanah Dangkal Di Sekitar TPA Kebon Kongok Menggunakan Parameter Fisika dan Kimia. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 19(2), 126–134. https://doi.org/10.20527/flux.v19i2.13030
Tan, W., Liang, Y., Xu, Y., & Wang, M. (2022). Structural-controlled formation of nano-particle hematite and their removal performance for heavy metal ions: A review. Chemosphere, 306, 135540. https://doi.org/10.1016/j.chemosphere.2022.135540
Tarigan, E. R., Frida, E., Humaidi, S., & Susilawati. (2025). Adsorption mechanism of heavy metals using activated carbon derived from Hydrilla verticillata. Trends Is Sciences, 22(1), 8732. https://doi.org/10.48048/tis.2025.8732
Tiwow, V. A., Arsyad, M., Palloan, P., & Rampe, M. J. (2018). Analysis of mineral content of iron sand deposit in Bontokanang Village and Tanjung Bayang Beach, South Sulawesi, Indonesia. Journal of Physics: Conference Series, 997(1). https://doi.org/10.1088/1742-6596/997/1/012010
Vopel, K., Pook, C., Wilson, P., & Robertson, J. (2017). Offshore iron sand extraction in New Zealand: Potential trace metal exposure of benthic and pelagic biota. Marine Pollution Bulletin, 123(1–2), 324–328. https://doi.org/10.1016/j.marpolbul.2017.09.018
Yahdi, Meiliyadi, L. A. D., Multazam, & Arizona, K. (2025). Improvement of Water Quality by Hematite Based on River Sand Magnetic Minerals of Lombok Island. Jurnal Penelitian Dan Pengkajian Ilmu Pendidikan: E-Saintika, 9(2), 525–540. https://doi.org/10.36312/e-saintika.v9i2.3273
Zhang, Q., Zong, S., Bai, B., Zheng, D., & Ma, Z. (2025). Insight into the photothermal boosted ofloxacin removal by magnetic CuFe2O4/pyrite waste catalyst: Mechanism, degradation pathways, and toxicity evaluation. Separation and Purification …. https://www.sciencedirect.com/science/article/pii/S1383586624026170
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Firda Yuslihan Amri, Lalu Ahmad Didk Meiliyadi, Muh. Wahyudi, Muhammad Arif Firmansyah, Isniwana Damayanti (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









